Friday, 24 December 2021

Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - Day Two (Bot using Microsoft's Bot Framework)

 

Chatbot Tutorial Roadmap

 
Since this is a vast topic and beyond the scope of a single article, I have divided the sections into multiple articles. In the first article, we’ll see how to create a chatbot using Google’s Dialogflow and test the bot in Dialogflow console. We’ll also see how it could be integrated with Slack. The second article will demonstrate how to create a custom chatbot using Microsoft’s bot framework and enable the webhooks in Dialogflow and return the response from the custom bot to Dialogflow intents as a fulfillment response. The third article of the series will demonstrate how to integrate the complete crated bot in article two and three with Facebook Messenger and Slack and test the webhook response in the two environments. Following are the three articles of tutorial about learning how to create a custom chatbot.
  1. Your first Chatbot using Microsoft’s Bot Framework and Dialogflow API: Part 1 (Dialogflow and Slack Integration)
  2. Your first Chatbot using Microsoft’s Bot Framework and Dialogflow API: Part 2 (Bot using Microsoft’s Bot Framework)
  3. Your first Chatbot using Microsoft’s Bot Framework and Dialogflow API: Part 3 (Integrate and test the bot on Slack and Facebook Messenger)

Introduction

 
From Wikipedia,
“A chatbot (also known as a smartbot, talkbot, chatterbot, Bot, IM bot, interactive agent, conversational interface or artificial conversational entity) is a computer program or an artificial intelligence which conducts a conversation via auditory or textual methods.[1] Such programs are often designed to convincingly simulate how a human would behave as a conversational partner, thereby passing the Turing test. ”
 
In this article, I’ll demonstrate how to create a custom chatbot using Microsoft’s bot framework and enable the webhooks in Dialogflow and return the response from the custom bot to Dialogflow intents as a fulfillment response. The reader of the article needs to know how to create a bot using Dialogflow and for that one can follow the last article of this series where it is explained how to create a bot in Dialogflow.
 

Case Study

 
Let’s imagine a scenario for our bot creation. Let’s say there is a newly opened restaurant and they have recently launched their website, Facebook page, Twitter handles and integrated their business with other social media accounts. The restaurant wants to come up with a digital solution to book a table in the restaurant online by the user and they want to create an automated bot to do so. An end-user can talk to bot and book a table. The bot will ask all the relevant details before table booking in the restaurant like date, time, number of persons etc. We’ll create the bot and integrate that with few social media accounts.
 

Setup Dialog Flow Account and Make the Agent work

 
“Dialogflow is powered by Google’s machine learning and Give users new ways to interact with your product by building engaging voice and text-based conversational interfaces, such as voice apps and chatbots, powered by AI. Connect with users on your website, mobile app, the Google Assistant, Amazon Alexa, Facebook Messenger, and other popular platforms and devices. Read more
 
You need to follow the last article of this series to set up the Dialogflow account and create a Bot agent with intents. After completing that you can proceed with creating webhooks and integrating with the Dialogflow agent in this article.
 

Create Bot using Microsoft’s Bot Framework

 
With Microsoft’s Bot Framework, you can “Build, connect, deploy, and manage intelligent bots to naturally interact with your users on a website, app, Cortana, Microsoft Teams, Skype, Slack, Facebook Messenger, and more. Read more
 

Installing Bot Framework

 
We’ll use one prior version of the Bot Framework to create the bot.
  1. Go to this URL for taking care of all the prerequisites before we start. You can install Visual Studio 2017 for windows if you do not already have it, update all the extensions of Visual Studio 2017 if you already have VS 2017 and then download the three zips by clicking on the links as shown below. These zip files serve as templates for creating the Bot. I’ll also attach the zips as downloadable.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Once the three zips i.e. “Bot Application.zip”, “Bot Controller.zip” and “Bot Dialog.zip” are downloaded, put those into the Templates folder of Visual Studio, usually found under Documents->Visual Studio 2017 -> Templates -> ProjectTemplates -> Visual C#.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)

Creating A Bot Framework Type Project in Visual Studio 2017

  1. Open the Visual Studio and click for creating a new project. You’ll see all the new Bot Framework templates to create the Bot Framework type project if you search with the name bot in the project templates. Choose “BotApplication” as project type, give it a meaningful name for e.g. “BookATableBot”, choose a location and your solution file name and click OK,

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Once the project is created, the solution structure will look like as follows. It will have a similar kind of configuration as for any web API project with some modifications like controller name here is “MessagesController”, there is a Dialogs folder and a class named RootDialog.cs.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)

Bot Framework Emulator

  1. To test the Bot, we need to have an emulator and we’ll use here a somewhat older version of the emulator. You can use the latest one as well. Go to this URL and download and install the emulator for windows.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Now, simply run the application from Visual Studio by pressing F5.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. When the default page is launched which is in my case localhost:3979, then launch the installed emulator and provide the URL for your Messages controller i.e. by appending api/messages to the launched application URL. So, the URL becomes, http://localhost:3979/api/messages. Provide this URL to the emulator.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Once the URL is provided, you can test the bot by typing anything you want for e.g. “Hi” and the application will return the response “You sent Hi which was 2 characters”. Now where is this response coming from?

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. If we go back to the solution and see RootDialog.cs class, we see a message there named MessageReceivedAsync which returns this response.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
    1. private async Task MessageReceivedAsync(IDialogContext context, IAwaitable<object> result)  
    2. {  
    3.   var activity = await result as Activity;  
    4.   
    5.   // calculate something for us to return  
    6.   int length = (activity.Text ?? string.Empty).Length;  
    7.   
    8.   // return our reply to the user  
    9.   await context.PostAsync($"You sent {activity.Text} which was {length} characters");  
    10.   
    11.   context.Wait(MessageReceivedAsync);  
    12. }  
Now, use your debugging skills to test how the message is returned when the call was made to the Messages controller.
 

Publishing the Bot from Visual Studio to Azure

 
Before we write the response-methods and integrate our bot with Dialogflow. Let’s publish the so far created bot to Azure. If you do not have an Azure account, you can create a free trial account. I am also using a free trial account of Azure here.
  1. Right-click the project in solution explorer and click on Publish as shown below.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Choose App Services and you can choose to create new app service here and click on Publish, it will land up on a new page to fill up some user

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. While creating app service, provide the app name of your choice, select the subscription type, resource group (where your related Azure resources will stay), and a hosting plan. Keep hosting plan to the minimal. I have purposely chosen to set Application Insights to None as we do not need it. Click on create.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Once you click on create and again publish the project, the project will compile and publish the source code to Azure and a new page will be launched with the name starting the app name you provided while creating an application, the URL will be like https://bookatablebot.azurewebsites.net.

    That means our bot is successfully published to the Azure server. There are more things to do before we see our bot working with Dialogflow, but those are simple things. Now, we need to register our Bot.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
 

Register the Bot

  1. So far so good, now for registering the published bot, click on the link shown on the launched page after bot published.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. It will open up the page with the URL.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Go to the URL to register your bot.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Here, few settings are required to be configured before a bot is registered. Fill in the details like display name of the bot of your choice for e.g. “Book A Table Bot”, provide bot handle name for e.g. “bookatable” and description which is by the way optional.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Under the Configuration section, provide the messaging endpoint as the URL of the published bot on Azure append “api/messages” to the URL. You also need to create the Microsoft app id and password to associate this new app to it.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Click on the link saying, “Create Microsoft App ID and password”, this will open a new page to where you can see the name of the page and app id generated.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. You can generate the password and store app id and password to some safe location as well for future reference.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Go back to Visual Studio, and in the Web.config, provide the MicrosoftAppId and McrosoftAppPassword that we generated.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Publish again.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Come back to register bot page and put the owners as the email id used for your Azure account and then click on Register button to Register the bot.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. You can now test your bot using the Test button as shown below. You can also do this registration process directly on Azure or migrate this registered bot to Azure as shown in the red-colored bar message in the following image.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)

Dialogflow.v2 SDK

 
It is time now to create a controller to handle the Dialogflow requests. We’ll create a controller to handle the requests coming from the agents that we created in Google Dialogflow and return the response from this controller as a fulfillment text.
  1. Open the Nuget Package manager in the solution for the project and install the Google.Apis.Dialogflow.v2 package.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Add a new controller to Controllers folder and name it DialogFlowController. Add a Post method that takes GoogleCloudDialogflowV2WebhookRequest as a parameter and returns back

  2. Return the response having FulfillmentText and Source as the controller name so that we know that the response is coming from our controller and nowhere else. Add a Get method to just return “Hello DialogFlow!”.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Publish the project again to Azure. Now when the URL is launched i.e. when the project is published, append “api/dialogflow” i.e. the URL of the controller method. When we hit enter, we see the response coming from the Get method of the Dialogflow controller.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)

Webhooks in Dialogflow

  1. Let’s add the controller response as a response to the user in our Dialogflow bot by enabling the webhook configuration and enabling fulfillment for the bot. Go to the Fulfillment in Dialogflow console and enable the Webhook configuration. Provide the URL of the API that got developed by bot framework and published on Azure. Now save the configuration.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Go to the Intents and for WelcomeIntent (I have renamed the Default Welcome Intent to WelcomeIntent), enable the Fulfillment for the webhook So that the fulfillment response comes from the webhook call and not from the default response.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Save the intent and try to type something and press enter, the response tat you’ll get now is “Hello DialogFlow!”. This response comes from the Post method of the DialogFlow controller as a fulfillment text. So, our Webhook is well integrated and working fine.

Webhook for table booking bot

 
This section will have real action. In this section, well create a basic project structure to handle intents in the code in our project in visual studio and provide the responses as per intent requests. We’ll create a Bot model that will map to the request and response coming from Dialogflow and process the requests accordingly using the Dialogflow SDK v2.
 

BotModel

 
First, create a model that could be mapped with the incoming agent requests and outgoing responses from our code. Add a new folder in the project and add a new class named BotModel.cs.
 
Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
 
Add the following code to the class file.
  1. using System;  
  2. using System.Collections.Generic;  
  3. using System.Linq;  
  4. using System.Web;  
  5.   
  6. namespace BookTableBot.Models  
  7. {  
  8.   public class BotModel  
  9.   {  
  10.     public BotModel()  
  11.     {  
  12.       Id = "";  
  13.       Session = new Session();  
  14.       Request = new Request();  
  15.       Response = new Response();  
  16.     }  
  17.     public string Id { getset; }  
  18.     internal Session Session { getset; }  
  19.     internal Request Request { getset; }  
  20.     internal Response Response { getset; }  
  21.   
  22.   
  23.   }  
  24.   internal class Request  
  25.   {  
  26.     public string Id { getset; }  
  27.     public string Intent { getset; }  
  28.     public string State { getset; }  
  29.     public List<KeyValuePair<string,string>> Parameters { getset; }  
  30.   }  
  31.   
  32.   internal class Response  
  33.   {  
  34.     public string Text { getset; }  
  35.     public string Event { getset; }  
  36.   
  37.   }  
  38.   
  39.   internal class Session  
  40.   {  
  41.     public string Id { getset; }  
  42.   }  
  43. }  
Now, this file contains four classes; i.e., BotModel class, Session, Request and Response classes with their properties. BotModel class has properties like Id, Session, Request, and Response which are also initialized inside the BotModel constructor. Request class has Id, State, intent, and Parameters as a key-value pair. Response class has Text and Event properties and Session has an Id property. These classes and properties are kept in a way that matches the request and response and session attributes of the Dialogflow API.
 

Model Mapper

 
Next step is to create a model mapper class that will map our bot model to GoogleCloudDialogflowV2WebhookResponse and GoogleCloudDialogflowV2WebhookRequest to bot model. So there would be two methods in that class.
  1. Create a folder named utilities in the project and add a class named ModelMapper to that folder.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Add the following class code for the ModelMapper class.
    1. using ApiAiSDK.Model;  
    2. using BookTableBot.Models;  
    3. using Google.Apis.Dialogflow.v2.Data;  
    4. using System;  
    5. using System.Collections.Generic;  
    6. using System.Linq;  
    7. using System.Web;  
    8.   
    9.   
    10. namespace BookTableBot.Utilities  
    11. {  
    12.   public class ModelMapper  
    13.   {  
    14.     internal static BotModel DialogFlowToModel(GoogleCloudDialogflowV2WebhookRequest dFlowResponse)  
    15.     {  
    16.       var botModel = new BotModel()  
    17.       {  
    18.         Id = dFlowResponse.ResponseId  
    19.       };  
    20.       botModel.Session.Id = dFlowResponse.Session;  
    21.       botModel.Request.Intent = dFlowResponse.QueryResult.Intent.DisplayName;  
    22.       botModel.Request.Parameters = dFlowResponse.QueryResult.Parameters.ToList()  
    23.         .ConvertAll(p => new KeyValuePair<stringstring>(p.Key, p.Value.ToString()));  
    24.       return botModel;  
    25.     }  
    26.   
    27.     internal static GoogleCloudDialogflowV2WebhookResponse ModelToDialogFlow(BotModel botModel)  
    28.     {  
    29.       var response = new GoogleCloudDialogflowV2WebhookResponse()  
    30.       {  
    31.         FulfillmentText = botModel.Response.Text,  
    32.         Source = "BookAtableBot",  
    33.       };  
    34.       return response;  
    35.     }  
    36.   }  
    37. }  
The method DialogFlowToModel maps Dialogflow webhook request to model and the method ModelToDialogFlow maps our model to Dialogflow webhook response.
 

Intent Handlers

 
We need to have intent handlers in our project that handles the request for intent i.e. in our case for WelcomeIntent and BookATable intent. The role of these handlers is to take the parameters from the requested intent and send a response as a fulfillment of the intent.
  1. Add a folder named Handlers in the project and add two classes named BookATableIntent and WelcomeIntent,

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. In BookATableIntent add the following code logic to return the response for the requested.
    1. using BookTableBot.Models;  
    2. using System;  
    3. using System.Collections.Generic;  
    4. using System.Linq;  
    5. using System.Web;  
    6.   
    7. namespace BookTableBot.Handlers  
    8. {  
    9.   public class BookATableIntent  
    10.   {  
    11.     internal static BotModel Process(BotModel botModel)  
    12.     {  
    13.       var time = botModel.Request.Parameters.FirstOrDefault(p => p.Key == "time");  
    14.       var date = botModel.Request.Parameters.FirstOrDefault(p => p.Key == "date");  
    15.       var number = botModel.Request.Parameters.FirstOrDefault(p => p.Key == "number");  
    16.   
    17.       botModel.Response.Text = "Awesome! Your table for " + number + " is booked for " + date + " at " + time + "Have a nice day!";  
    18.       return botModel;  
    19.     }  
    20.   }  
    21. }  
    Here the Process method takes the model as a parameter and fetches out the request parameters that we got mapped in mapper class and accordingly performs an action like setting up response text and returns the same bot model with a response text as well.
  1. Similarly, for the WelcomeIntent add the following class code.
    1. using BookTableBot.Models;  
    2. using System;  
    3. using System.Collections.Generic;  
    4. using System.Linq;  
    5. using System.Web;  
    6.   
    7. namespace BookTableBot.Handlers  
    8. {  
    9.   public class WelcomeIntent  
    10.   {  
    11.     internal static BotModel Process(BotModel botModel)  
    12.     {  
    13.       botModel.Response.Text = "Hi! Would you like to book a table? If yes, simply type 'Book a table'";  
    14.       return botModel;  
    15.     }  
    16.   }  
    17. }  
The Process method of this intent takes the request model and sets up the response text as "Hi! Would you like to book a table? If yes, simply type 'Book a table'". So, if user types in “Book a table”, our BookAtable intent is called from the Dialogflow API.
 

Intent List

 
In our case, there are only two intents but there could be a scenario where you could have thousands of intents in a full-fledged bot application. To manage that number of intents in the code could really be a hassle. To maintain that we need to have an IntentList class that takes care of all the intents. Add a new class named IntentsList to the Models folder.
 
Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
 
Add the following class code to that class.
  1. using System;  
  2. using System.Collections.Generic;  
  3. using System.Linq;  
  4. using System.Web;  
  5.   
  6. namespace BookTableBot.Models  
  7. {  
  8.   public class IntentsList : List<KeyValuePair<string, Func<BotModel, BotModel>>>  
  9.   {  
  10.     public void Add(string intentName, Func<BotModel,BotModel> function)  
  11.     {  
  12.       var intent = this.FirstOrDefault(i => i.Key.ToLower() == intentName.ToLower());  
  13.       if (string.IsNullOrWhiteSpace(intent.Key))  
  14.       {  
  15.         Add(new KeyValuePair<string, Func<BotModel, BotModel>>(intentName, function));  
  16.       }  
  17.     }  
  18.   }  
  19. }  
The method Add takes the intent name and the function associated with that and checks if the intent list already has that intent. If not, it adds to the list.
 
In the WebApi.Config.cs, we’’ have a static IntentHandlers variable of type IntentList that will hold all the intents. So, add a variable named IntentHandlers as follows in the WebApi.Config.cs file.
  1. public static IntentsList IntentHandlers { getprivate set; }  
And in the Register method, initialize this variable.
  1. IntentHandlers = new IntentsList  
  2.       {  
  3.         {  
  4.           "BookATableIntent", (mo)=>Handlers.BookATableIntent.Process(mo)  
  5.         },  
  6.         {  
  7.           "WelcomeIntent", (mo)=>Handlers.WelcomeIntent.Process(mo)  
  8.         }  
  9.       };  
We, see that we have intent names matching to the name of the intents we have in Dialogflow console. Make sure the names match else proper matching at the code would not happen and intent won’t be called.
 
WebApi.Config.cs Code
  1. using BookTableBot.Models;  
  2. using Newtonsoft.Json;  
  3. using Newtonsoft.Json.Serialization;  
  4. using System;  
  5. using System.Collections.Generic;  
  6. using System.Linq;  
  7. using System.Web.Http;  
  8.   
  9. namespace BookTableBot  
  10. {  
  11.   public static class WebApiConfig  
  12.   {  
  13.     public static IntentsList IntentHandlers { getprivate set; }  
  14.     public static void Register(HttpConfiguration config)  
  15.     {  
  16.       IntentHandlers = new IntentsList  
  17.       {  
  18.         {  
  19.           "BookATableIntent", (mo)=>Handlers.BookATableIntent.Process(mo)  
  20.         },  
  21.         {  
  22.           "WelcomeIntent", (mo)=>Handlers.WelcomeIntent.Process(mo)  
  23.         }  
  24.       };  
  25.       // Json settings  
  26.       config.Formatters.JsonFormatter.SerializerSettings.NullValueHandling = NullValueHandling.Ignore;  
  27.       config.Formatters.JsonFormatter.SerializerSettings.ContractResolver = new CamelCasePropertyNamesContractResolver();  
  28.       config.Formatters.JsonFormatter.SerializerSettings.Formatting = Formatting.Indented;  
  29.       JsonConvert.DefaultSettings = () => new JsonSerializerSettings()  
  30.       {  
  31.         ContractResolver = new CamelCasePropertyNamesContractResolver(),  
  32.         Formatting = Newtonsoft.Json.Formatting.Indented,  
  33.         NullValueHandling = NullValueHandling.Ignore,  
  34.       };  
  35.   
  36.       // Web API configuration and services  
  37.   
  38.       // Web API routes  
  39.       config.MapHttpAttributeRoutes();  
  40.   
  41.       config.Routes.MapHttpRoute(  
  42.           name: "DefaultApi",  
  43.           routeTemplate: "api/{controller}/{id}",  
  44.           defaults: new { id = RouteParameter.Optional }  
  45.       );  
  46.   
  47.       var appXmlType = config.Formatters.XmlFormatter.SupportedMediaTypes.FirstOrDefault(t => t.MediaType == "application/xml");  
  48.       config.Formatters.XmlFormatter.SupportedMediaTypes.Remove(appXmlType);  
  49.     }  
  50.   }  
  51. }  

Intent Router

 
We have almost everything in place for our bot. The only thing remaining is to call the process methods of intent handlers from the controller based on the needed intent request. For that, we’ll add an IntentRouter that will be called from the Dialogflow controller based on the request type of the intent.
 
Add a new class named IntentRouter in the Utilities class and add the following code to that class.
  1. using BookTableBot.Models;  
  2. using System;  
  3. using System.Collections.Generic;  
  4. using System.Linq;  
  5. using System.Web;  
  6.   
  7. namespace BookTableBot.Utilities  
  8. {  
  9.   public class IntentRouter  
  10.   {  
  11.     public static BotModel Process(BotModel botModel)  
  12.     {  
  13.       var intentsList = WebApiConfig.IntentHandlers;  
  14.       var intent = intentsList.FirstOrDefault(i => i.Key.ToLower() == botModel.Request.Intent.ToLower());  
  15.       if (!string.IsNullOrWhiteSpace(intent.Key))  
  16.       {  
  17.         return intent.Value(botModel);  
  18.       }  
  19.       if (string.IsNullOrWhiteSpace(botModel.Response.Text))  
  20.       {  
  21.         botModel.Response.Text = "Sorry, I do not understand. please try again.";  
  22.       }  
  23.       return botModel;  
  24.     }  
  25.   }  
  26. }  
The process method of intent router class takes bot model and tries to match the name of the intent from the intent handlers list and accordingly return the intent for which the request is made.
 

Dialogflow Controller

 
Finally, modify the Post method of the controller to take the webhook request, map the model and call the Process method of IntentRouter.
  1. using ApiAiSDK.Model;  
  2. using BookTableBot.Utilities;  
  3. using Google.Apis.Dialogflow.v2.Data;  
  4. using Microsoft.Bot.Builder.Luis.Models;  
  5. using System;  
  6. using System.Collections.Generic;  
  7. using System.Linq;  
  8. using System.Net;  
  9. using System.Net.Http;  
  10. using System.Web.Http;  
  11.   
  12. namespace BookTableBot.Controllers  
  13. {  
  14.   public class DialogFlowController : ApiController  
  15.   {  
  16.     public GoogleCloudDialogflowV2WebhookResponse Post(GoogleCloudDialogflowV2WebhookRequest obj)  
  17.     {  
  18.       var botModel = ModelMapper.DialogFlowToModel(obj);  
  19.       if(botModel == null)  
  20.       {  
  21.         return null;  
  22.       }  
  23.       botModel = IntentRouter.Process(botModel);  
  24.       return ModelMapper.ModelToDialogFlow(botModel);  
  25.     }  
  26.   
  27.     public string Get()  
  28.     {  
  29.       return "Hello DialogFlow!";  
  30.     }  
  31.   }  
  32. }  
So far so good, this makes our basic application working. Time to test now but before that compile the project and publish it again to Azure.
 

Testing the Bot

 
Once published to Azure, we can test the bot in the Dialogflow console itself. We’ll also test the bot on Google Assistant as it could directly be done via Google’s Dialogflow console.
 

Test in Dialogflow console

 
Go back to the Dialogflow console. Make sure you got the webhook enabled for fulfillment and the bot API URL is placed in the webhook.
 
This was explained earlier in this tutorial. Make sure the fulfillment option is enabled for BookATable and Welcome Intent.
  1. Open the WelcomeIntent and in the test window, type “Hi”. The response will come from our intent handler as follows with the response text as "Hi! Would you like to book a table? If yes, simply type 'Book a table'"

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Now follow the instruction of Welcome intent response and type “Book a table”. The default response will ask for the date, time and number of persons.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
Finally, when you provide the mandatory parameters i.e. number of persons, time and date, it returns the response as follows.
 
Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework) 
 
The response is coming from our webhook. To ensure that click on the Diagnostic Info button at the bottom.
 
Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
We get to see all the requests and response to our intent. Check Fulfillment Response and the Source inside it. It comes from our webhook.
 
Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework) 
 
And Fulfillment Status as follows which says Webhook execution successful.
 
Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework) 
 

Bot in Google Assistant

 
You can test the bot in Google assistant as well.
  1. In Dialogflow console, go to Integrations section and click on “See how it works in Google Assistant” button.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. This will open Google Assistant emulator, where you can type in or provide audio input. Click on “Talk to my test app”.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. It returns the response from the welcome intent.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. Type, “Book a table”.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. It will ask all the mandatory parameters input as follows.

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)
  1. And Finally, will return the response from the webhook. Awesome 😊

    Create Chatbot Using Microsoft's Bot Framework And Dialogflow API - (Bot using Microsoft's Bot Framework)

Conclusion

 
In this detailed article, we learned what a chatbot is, how to create your own bot using Microsoft’s Bot framework. We also learned how to enable webhooks in Dialogflow console for the fulfilments and return the response from the webhook instead of defaulted text. We tested the bot in Dialogflow console and with Google Assistant. In the next article of this series, we’ll learn how to integrate this bot with social media accounts like Slack, Facebook messenger, etc.

No comments:

Post a Comment